Filtro de RED & Armónicos

Respuesta de un filtro de RED, frente a las principales frecuencias armónicas que se producen al conectar cargas no lineales a la red eléctrica. Análisis del funcionamiento de un filtro de RED y medidas de su respuesta en frecuencias utilizando métodos muy sencillos.

Armónicos en la RED eléctrica

Los armónicos en la corriente se propagan por las redes eléctricas y crean distorsiones en la forma de onda de tensión, senoidal de origen,  modificando las impedancias de las líneas, y pudiendo provocar el mal funcionamiento de algunos equipos eléctricos.

Disparo del diferencial sin motivo aparente

Salta el diferencial sin motivo aparente (causa y solución)

Las corrientes armónicas son componentes de la corriente eléctrica, descompuesta en la serie de Fourier. Los armónicos tienen una frecuencia que es múltiplo  de la frecuencia fundamental, múltiplos de 50 ó 60 Hz en las redes eléctricas. El número múltiplo (n) de la frecuencia fundamental,  determina el rango de la componente armónica. Por ejemplo, el tercer armónico de una red eléctrica de 50 Hz será 50 x 3 = 150 Hz.

Armónicos en la red eléctrica

Los armónicos se clasifican según su amplitud, indicada en % con respecto a la fundamental, y su paridad par o impar. Los armónicos de rango par no tienen relevancia en los entornos industriales, porque se anulan gracias a la simetría de la señal alterna. En líneas trifásicas, las corrientes de armónicos de rango 3 y sus múltiplos están en fase (ver imagen anterior) y se suman de forma vectorial en el hilo del neutro, pudiendo provocar un excesivo calentamiento en dicho conductor.

Filtros de red

En la mayoría de los dispositivos modernos que van conectados a la red eléctrica, lo primero que se encuentra después del cable de alimentación es un filtro de red. Los filtros de red son filtros ‘paso-bajo’, y normalmente son circuitos pasivos compuestos por una serie de bobinas y condensadores.

Filtro de red standard

Un filtro de red podría ir alojado dentro del propio conector de alimentación, intercalado entre el cable y la alimentación al equipo (electrodomésticos), o formando parte de la propia fuente de alimentación del equipo (fuentes conmutadas).

Filtro de red

El objetivo principal de un filtro de red, es la de minimizar el nivel de radiaciones electromagnéticas (EMI) producidas por los equipos. La mayoría de las  fuentes de alimentación conmutadas que incorporan los dispositivos modernos, incorporan un filtro de red en su entrada.

¿Se eliminan los armónicos con un filtro de red?

Es posible que esta pregunta te la hayas hecho alguna vez, porque los fabricantes no lo dejan muy claro, ni muestran la respuesta en frecuencias de un filtro de red. Para salir de dudas, he realizado estas medidas de respuesta en frecuencia, utilizando un equipamiento muy simple. El equipo de medida es un osciloscopio o polímetro, y el generador de frecuencias un teléfono móvil… convertido en un generador de señales de audio, mediante la instalación de una APP.

Te adelanto que el filtro de red que medí no filtra ni atenúa las señales armónicas. Puedes ver todo el proceso de medida y los resultados en el siguiente video:

 

Cabina acústica para impresora 3D

Construcción de una cabina acústica, para insonorizar una impresora 3D. La impresora se monta en una mesa de 55×55 cms, y se atornilla para evitar las posibles vibraciones durante la impresión. Se refuerza la mesa con un tablero de madera en la parte trasera, y se coloca una repisa para almacenar los rollos de hilo, las herramientas y accesorios. La impresora se alimenta a través de una pequeña UPS, y se controla su encendido y apagado mediante un interruptor inalámbrico, conectado por WiFi. También se añade una cámara de video inalámbrica, para controlar los trabajos de impresión a distancia y poder apagar la impresora cuando finalizan o existe algún problema. La cabina se construye con paneles de poliestireno de 5 cms. de espesor y se aisla acústicamente con multiaislante D160, de 2 cms. de espesor.

Dimensiones de la cabina

Estructura de la cabina

Para construir la estructura de la cabina se utilizan 4 paneles de Poliestireno extruído de 5 cms. de espesor. Al ser el poliestireno un material rígido, muy liviano y buen aislante térmico, podremos construir una cabina móvil y mejorar el rendimiento eléctrico de la impresora.

Armazón con paneles de poliestireno extruído

Las juntas de los paneles se montan haciendo un machihembrado en los laterales, con el fin de dar rigidez al conjunto. Los paneles van pegados con un adhesivo  de secado rápido, especial para poliestireno.

Panel de aislamiento acústico

Para mejorar el aislamiento acústico durante la impresión, forré el interior de la cabina con aislante acústico de 2 cms. de espesor. Este aislante se compra en planchas de 2 metros, pero es muy flexible y se puede transportar en un rollo. El aislante va pegado en el interior de la cabina con cola de contacto,  pero con cola especial para poliestireno (sin disolventes).

Acabado de la cabina

El problema que tiene el poliestireno es que es muy frágil, y por eso es conveniente proteger todas sus bordes. Yo utilicé cantoneras de imitación a madera para las aristas, y zócalo del mismo material para construir el marco del cristal frontal.

Tapado de las grietas

 

Antes de pintar es conveniente tapar todos los desperfectos y juntas con algún tapa grietas, y una vez seco, alisar todo con la ayuda de una lija de grano fino.

 

Pintado de la cabina

Los paneles los pinté con pintura plástica normal para paredes (pintura al agua).

Ventilación

Al montar la impresora dentro de un habitáculo cerrado se mejora el rendimiento acústico, térmico y eléctrico (se reduce el consumo)... pero un aumento de temperatura no es nada bueno para los componentes electrónicos. Para evitar el recalentamiento de la CPU, construí una nueva tapa con la misma impresora 3D, y sobre ella monté un ventilador de 40×40 mm. a 12VDC. La alimentación del ventilador va conectada en la toma de entrada que alimenta la CPU. Así el ventilador permanecerá funcionando siempre que esté alimentada la CPU.

Ventilador para la CPU

Para facilitar la ventilación en el interior de la cabina, construí también una rejilla de 50×50 mm. con acceso al exterior. Esta rejilla la he montado en la pared lateral de la izquierda de la cabina, y está alineada con la salida de aire del ventilador de la CPU.

Ventilación de la cabina

Descargar ficheros .stl

Anet A6, ventilation of the CPU inside an acoustic cabin

Visualización y apagado remoto

Los trabajos de impresión 3D suelen durar horas, y en algunos casos más de un día. Con el fin de evitar una posible interrupción del proceso de impresión, provocada por un fallo eléctrico de corta duración (fluctuación de red, salto del diferencial) la impresora la tengo alimentada a través de una pequeña UPS.  Como también me pareció interesante el poder comprobar a distancia el proceso de impresión, he instalado una pequeña cámara  y un interruptor de red con control remoto.

Control de impresión remoto

Tanto el interruptor de red como la cámara de video van conectados por WiFi, y se pueden controlar a distancia desde cualquier dispositivo móvil  que disponga de una conexión a Internet.

En el siguiente video puedes ver con más detalle todo el proceso de fabricación de esta cabina acústica: