Calidad del agua & Ósmosis Inversa

Purificación del agua mediante Ósmosis inversa. Calidad del agua según la Organización Mundial de la Salud (OMS). Valores TDS del agua potable en diferentes capitales de Europa. Funcionamiento de un sistema de filtración doméstico por Ósmosis inversa de 5 etapas. Medidas comparativas del valor TDS (proporción de partículas disueltas en el agua) antes y después del filtrado.

¿Qué es la Ósmosis?

La ósmosis está basada en el equilibrio de dos fluidos con diferentes concentraciones de sólidos disueltos (TDS). Cuando se juntan dos fluidos diferentes, con el tiempo tienden a mezclarse. Si ambos líquidos son del mismo volumen pero están separados por una membrana permeable, el fluido de menor concentración es el que atravesará la membrana para mezclarse con el de mayor concentración.

Presión osmótica

Al cabo de un tiempo se establecerá el equilibrio, quedando el fluido de mayor concentración con más volumen que el de menor concentración. La distancia entre ambas alturas se denomina Presión Osmótica.

Ósmosis Inversa

Si ponemos agua sucia y agua limpia en dos columnas separadas por una membrana permeable, y se aplica una presión superior a la presión osmótica en el fluido del agua sucia, que es el de mayor concentración de sólidos, se producirá el efecto inverso. Pasará por la membrana el líquido del agua sucia, y no sus sólidos disueltos, y subirá el nivel de agua limpia. Este proceso es  conocido como Ósmosis Inversa y se utiliza para depurar agua.

Ósmosis inversa

Dependiendo del tipo de membrana y concentración de sólidos disueltos, será necesaria una presión mayor o menor para obtener agua potable. Por ejemplo, la presión necesaria para potabilizar el agua de mar es de 60 bar.

Calidad del agua

La Organización Mundial de la Salud (OMS) y otras instituciones que regulan la calidad del agua consideran valores hasta los 500 mg/l como completamente seguros, y hasta 2.000 mg/l como suficientemente seguros para consumir de manera temporal, si no hay otra fuente de agua fácilmente disponible.

Calificación del agua según OMS

ÓSMOSIS INVERSA

Los sistemas de ósmosis inversa requieren de una corriente de agua que lave la membrana de forma tangencial mientras se realiza la filtración. Este lavado evita que la membrana se colapse a causa de los pequeños diámetros que tienen tanto las partículas filtradas como el poro de la membrana.

Interior filtro de ósmosis inversa

A la parte descartada se le llama ‘agua de rechazo‘ y puede ser reutilizada por el usuario para otros fines si así lo dispone en su instalación. El usuario de una ósmosis inversa doméstica puede reciclar esta parte de rechazo, conectando a un depósito adicional el tubo que normalmente va al desagüe. La proporción de agua de rechazo frente a la filtrada está determinada por el limitador de caudal (restrictor) que lleva el equipo justo antes de la conexión que va al desagüe. Una proporción aproximada de 4:1 es establecida por el fabricante.

Ósmosis Inversa para el agua potable

El agua que recibimos en nuestro hogar es potable, pero contiene mucha cal y otros elementos nocivos como: cloro, plomo, flúor, herbicidas, calcio, magnesio, mercurio, nitratos… y en algunos casos hasta cianuro. Aunque todos ellos lleguen en bajas concentraciones, no son nada aconsejables para la salud.

Ósmosis Inversa de 5 Etapas

Montar un sistema de ósmosis inversa partiendo del agua potable, es la solución más barata para asegurar la calidad del agua que bebemos y mejorar su sabor. Partiendo de agua potable, la presión que se necesita para que el sistema funcione correctamente está comprendida entre 3 y 5 Kg/cm2, dependiendo de la dureza del agua a tratar.

ÓsmosisEste tipo de agua es muy ligera y se elimina con más rapidez que otro tipo de aguas minerales, ayudando así a depurar el organismo, y además facilita el trabajo de filtrado que tienen que hacer los riñones.

Restrictor de desagüe

El control de caudal de agua que va al desagüe lo regula el restrictor, que funciona como una llave de paso medio abierta. La numeración que muestra el restrictor indica los mili litros de caudal de agua por minuto. El valor más bajo que se comercializa es de 300 mili litros por minuto. Dependiendo de la dureza del agua de suministro, se debería elegir un restircor  de caudal mayor o menor.

Restrictor

Cuando el valor TDS del agua es alto (aguas duras), es mejor utilizar un restrictor alto. Se perderá más agua, pero la salida del agua osmotizada será más pura y la membrana sufrirá menos. Con aguas más blandas es mejor un restrictor pequeño, porque así desperdicia menos agua. Si el rechazo es insuficiente, la membrana se dañará prematuramente, si es mayor, el desperdicio de agua puede ser excesivo. Se trata de encontrar un equilibrio entre la duración de la membrana y el desperdicio. La proporción citada puede variar en función de la salinidad, la temperatura, el desgaste de la membrana y la presión.

Filtro de ósmosis inversa

Los filtros de membrana de ósmosis inversa se catalogan por la cantidad de Galones de agua que pueden suministrar en un día (Galones por día = GPD). El valor que se suele instalar de origen en los equipos de ósmosis inversa, es de 50 GPD.

Filtros de ósmosis inversa

1 Galón = 3,78541 litros

Dependiendo de la calidad del agua de suministro, la calidad que queremos obtener a la salida y de los litros de producción, tendremos que elegir el tipo de membrana a instalar.

Manómetro

El manómetro se instala a la entrada del filtro de ósmosis inversa, después de la válvula de cierre. Cuando la válvula está abierta el equipo está funcionando, y el manómetro indica la presión de trabajo.

Manómetro

Si el depósito está lleno, la válvula se cierra y el manómetro se debe poner a cero. Si el manómetro nunca se pusiera a cero. nos indicaría que existe una fuga en el circuito. Estas indicaciones convierten al manómetro como imprescindible, pues nos da a conocer cómo está funcionando equipo.

Tabla de presión mínima para cada TDS

En las zonas donde el agua es blanda, con la presión del suministro que llega a las casas es suficiente para que funcione un equipo de Ósmosis inversa. Con aguas duras, o cuando la presión del suministro sea baja, intercalando una pequeña bomba de presión se soluciona el problema.

Depósito de agua

Los sistemas de ósmosis inversa producen agua con un caudal muy reducido. Por ese motivo es necesario intercalar un pequeño depósito de agua en la instalación, con el fin de disponer de una cierta cantidad de agua cada vez que abrimos el grifo. Cuando el equipo de ósmosis inversa no dispone de una pequeña bomba eléctrica para extraer el agua del depósito, se tiene que utilizar un depósito presurizado.

Depósito de agua presurizado

Estos depósitos en su interior disponen de 2 cámaras, separadas por una membrana elástica. En la parte superior es donde se almacenará el agua, y la cámara inferior tiene aire a presión. La presión del aire con el depósito vacío (sin agua en el tanque) es de alrededor de 0,5 bar. Esta presión irá subiendo a medida que se llene el depósito de agua. Cuando el depósito está lleno, la presión en la cámara de aire debería ser la misma que la del agua de suministro.

Ganador del sorteo

Ganador del sorteo de un PCB con tecnología SMD, para montar un display de 7 segmentos con control serie.

PCB display de 7 segmentos serie

El circuito impreso sorteado es el que se mostró en el video anterior, el cual incluye el circuito integrado TPIC6B595 -Shift Register- ya montado en el PCB.

Resultado del sorteo

El sorteo se realizó entre los suscriptores que hicieron un comentario en el video anterior, utilizando el software online: You2Pick

 

 

Prototipos PCB

Circuito impreso

El circuito impreso (PCB) es una parte muy importante para cualquier dispositivo electrónico. Antes de lanzar un nuevo producto al mercado, siempre es necesario comprobar el correcto funcionamiento de su circuito electrónico. En algunos casos sería suficiente comprobar el circuito en un simulador con software; sin embargo, siempre es conveniente realizar el montaje con todos sus componentes y lo más parecido posible al diseño final.

CPU: Baliza RGB

Existen muchos métodos para comprobar de forma rápida el correcto funcionamiento de un circuito electrónico:

  • Placas ProtoBoard, uniendo los componentes con cables
  • Circuitos impresos de tipo universal, realizando sus conexiones con puentes y cables soldados en el PCB.
  • Fabricación del circuito impreso, utilizando cualquier método de trasferencia y atacando el PCB con ácido.
  • Fabricación del circuito impreso con una fresadora digital (CNC)

El problema de utilizar cualquiera de estos métodos, es que nunca podremos montar los circuitos con componentes de montaje superficial (SMD). Por suerte, ahora hay muchas empresas que se dedican a fabricar circuitos impresos para prototipos y a precios muy asequibles. Como sucede en la mayoría de los casos con la electrónica, las empresas chinas son las más competitivas. El problema de realizar un pedido a China, es el largo tiempo que tenemos que esperar para recibir el prototipo, sumado al alto precio de sus envíos. Sin embargo, buscando por Internet siempre puedes encontrar alguna oferta. Ahora, como la empresa JLCPCB tiene una oferta muy interesante, la voy a aprovechar para encargar algunos circuitos impresos.

PCB: Display 7 segmentos serie

¿Quién es JLCPCB?

JLCPCB es una de las empresas de prototipos de circuitos impresos (PCB) más grandes de China, especializada en la fabricación de prototipos y producción de circuitos impresos en pequeños lotes. JLCPB cuenta con una experiencia de más de 10 años, trabajando para grandes empresas y aficionados a la electrónica.

¿Qué nos ofrece JLCPCB?

  • Una especial oferta en el primer pedido. Por tan sólo 2$ podemos obtener un lote de 10 PCB para fabricar nuestro primer prototipo a doble cara, y con acabado profesional.
  • Respuesta muy rápida en la fabricación, hasta 24 horas.
  • Envíos rápidos, entre 3 y 6 días si se utiliza el envío con la empresa DHL
  • Encargos Online, los pedidos se pueden hacer desde el mismo PC que utilizamos para el diseño del PCB, subiendo los archivos Gerber por Internet a su Web: https://jlcpcb.com/
  • Respuesta rápida ante cualquier problema o asesoramiento técnico.
  • JLCPCB forma parte del grupo de empresas: Integrated Electronic Engeneering Service

Integrated Electronic Engeneering Service

  • JLCPCB: Fabricación de prototipos PCB
https://jlcpcb.com/
https://jlcpcb.com/
  • EasyEDA: Software Online y libre para el diseño de circuitos impresos (PCB)
https://easyeda.com/
https://easyeda.com/
  • LCSC: Suministro de componentes electrónicos
https://lcsc.com/
https://lcsc.com/

Realizar un pedido a JLCPCB

Si estás interesado en realizar el pedido de tus circuitos impresos a la empresa JLCPCB, echa un vistazo al siguiente video:

50 céntimos

¿Qué se puede hacer con 50 céntimos de Euro?

Con 50 céntimos de Euro hay muy pocas cosas que se puedan comprar, incluso puede causar desprecio -por su bajo valor- cuando se utiliza como donativo. Sin embargo, el tipo de metal empleado para su fabricación permite hacer un uso algo diferente… convertir la moneda en un anillo.

¿Es legal hacer esto?

El dinero se considera un bien público, ya que el papel o metal con el que se fabrica ha sido costeado a cargo del erario público. Sin embargo, el código penal sólo estipula como delito la falsificación, sin contemplar como causa punible la destrucción de billetes o monedas. Por otra parte,  lo único que haces es cambiar la forma de una moneda por la de un anillo, incluso el valor de cambio posterior podría ser mayor que antes.

Sin embargo, por sentido común, nunca se debería utilizar el metal de las monedas para fabricar objetos.

PROCESO DE TRANSFORMACIÓN

Hay muchas maneras de transformar una moneda en anillo, pero este es el proceso que yo he seguido:

Aumentar el grosor de la moneda

Utilizando la base de hierro plana de un tornillo de banco, se va golpeando ligeramente con un martillo en el borde de la moneda. El golpeo debe ser uniforme y  girando la moneda con frecuencia. Si se golpea durante mucho rato, la moneda acabará por doblarse. Llegado a este punto, se puede elegir el tipo de anillo que quieres hacer. Puedes hacer un anillo totalmente plano, o hacer un diseño algo diferente… un anillo ondulado. Si quieres hacer un anillo convencional, tendrás que aplanar la moneda con el martillo antes de seguir.De moneda a anillo #1

Marcar el centro de la moneda

Es importante marcar el centro de la moneda y golpear el punto central con la ayuda de un granete, antes de utilizar el taladro.De moneda a anillo #2

Hacer un orificio en el centro de la moneda

El orificio central se inicia con una broca o fresa de 3 mm aproximadamente.De moneda a anillo #3

Agrandar el agujero

El agujero central de la moneda se tiene que agrandar hasta llegar casi al borde, pero dejando un pequeño margen. El agujero se puede hacer con brocas de diferentes tamaños, con un broca cónica o con una fresa.De moneda a anillo #4

Darle forma  al anillo con una piedra esmeril

Con la ayuda de una piedra esmeril se va dando forma al anillo, eliminando cualquier rebaba o arañazo profundo.De moneda a anillo #5

Ajustar el tamaño del anillo

Antes de pulir el anillo, se debería ajustar su tamaño. En este caso, sólo se podría agrandar ligeramente el orificio central. Con la ayuda de un cilindro cónico de metal y un martillo, se puede agrandar un poco el tamaño del anillo… pero reducirlo sería muy complicado.De moneda a anillo #6

Pulir el anillo

A mano y con lija de grano fino se eliminan todos los arañazos, antes de pasar al proceso de pulido. El pulido podría ser el proceso más largo de todos, pero es el más sencillo. Con la ayuda de cualquier pulimento y un pequeño taladro de mano, se puede conseguir un buen acabado.De moneda a anillo #7

En este punto no existe riesgo de dañar el anillo. Cuanto más tiempo se dedique a pulir el anillo, mejor será su acabado.De moneda a anillo #8

En el siguiente video puedes ver todo el proceso de transformación Moneda -> Anillo:

Display de 7 segmentos, control serie

Diseño de un display de 7 segmentos SMD, con control serie. Con este circuito se pueden apilar tantos dígitos en serie como sea necesario, porque el número de pines de control no cambian. En este circuito se utiliza el TPIC6B595 como registro de desplazamiento, y un 74HC04 (6 inversores) como ‘driver/separador’ de las señales de control: Clock, Strobe y Enable. Al utilizar un registro de desplazamiento (Shift Register), las señales de control (Clock, Strobe y Enable) son las mismas para todos los dígitos, y la línea de datos (Data) se conecta al primer dígito… encadenando la salida de datos de un dígito con el siguiente.

TPIC6B595

El diseño de este display de 7 segmentos es modular, y se pueden conectar tantos dígitos en serie como sean necesarios.

Conexión serie TPIC6B595

Cada dígito dispone de su propio regulador de tensión de 5V, pero sólo es necesario instalar uno para alimentar toda la serie. Las conexiones de la salida de un módulo se conectan con las de entrada del módulo siguiente, permitiendo así alimentar todos los módulos con un sólo regulador de tensión. Con el fin de evitar una carga excesiva de las señales de control (Clock, Strobe y Enable) y evitar posibles interferencias en el cableado, cada módulo dispone de un circuito que hace las funciones de ‘regenerador’ de la señal.

Display control serie

El circuito integrado 74HC04 dispone de 6 inversores, y se utilizan de dos en dos, con el fin de obtener el mismo nivel lógico de la entrada en la salida. El único detalle a considerar, es que la conexión de las 3 señales de control con el registro de desplazamiento (TPIC6B595) se realizan en las salidas del primer inversor. De esta forma, la CPU debería entregar las 3 señales de control: Clock, Strobe y Enable en modo invertido.

Control del display

Control de brillo PWM (Pulse-Width Modulation)

El control de brillo del conjunto de módulos que conformen el display, se realiza mediante la gestión de la señal ENABLE. Modificando el ancho del impulso de una señal  de frecuencia >20 Hz, con el fin de evitar el parpadeo,  se puede ajustar el nivel de luminosidad del display.

Control de brillo PWM

En la imagen anterior se puede observar que la frecuencia de la señal PWM es de 104 Hz, y al aumentar el ancho del semiciclo positivo el brillo decrece (ver el video). Como es lógico, el brillo máximo se obtendrá si permanece habilitado el 100% del tiempo la señal ENABLE (sin impulsos). En el circuito integrado TPIC6B595 el estado ON se corresponde con un nivel bajo (cero lógico). El control de brillo PWM lo podría gestionar la propia CPU, partiendo de la información que recibiera de un sensor de luminosidad.

Shift Register (Registro de desplazamiento)

Funcionamiento de un Shift Register o Registro de desplazamiento, muy útil cuando se necesita controlar una gran cantidad de dispositivos de forma simultánea, utilizando un microprocesador con un número limitado de terminales. Este componente electrónico –Shift Register– es muy usado en centrales de control destinados a la domótica, paneles electrónicos de tipo LED, etc.

8-Bit Shift Register

En los circuitos digitales, un registro de desplazamiento es una cascada de Flip-Flops que comparten el mismo reloj, en el que la salida de cada Flip-Flop está conectada a la entrada de datos del siguiente Flip-Flop de la cadena, dando lugar a un circuito que desplaza por una posición la matriz de bits almacenada en ella, desplazando los datos presentes en su entrada y desplazando el último bit en la matriz, en cada transición de la entrada de reloj.

Esquema interno del 74HC595

Los registros de desplazamiento –Shift Register– pueden tener entradas y salidas tanto en paralelo como en serie. Normalmente se configuran a menudo como Serial-In, Parallel-Out (SIPO) o como Parallel-In, Serial-Out (PISO). También hay modelos que tienen entrada en serie y paralelo y otros con salida en serie y en paralelo. También hay registros de desplazamiento bidireccionales que permiten el desplazamiento en ambas direcciones (L → R o R → L). La entrada en serie y la última salida de un registro de desplazamiento, también se pueden conectar para crear un registro de desplazamiento circular.

Funcionamiento (Shift Register)

Para comprender mejor el funcionamiento de un registro de desplazamiento, se puede montar en una placa de pruebas (Protoboard) el siguiente circuito:

Display de 7 segmentos con 74HC595

El hilo de entrada de datos (SER/DATA) se puede conectar a la línea de +5 o GND, dependiendo del estado lógico (1/0) que queramos introducir al registro. A continuación se pulsa el botón SRCLK/CLOCK, para que el primer dato entre en el registro, desplazando todos sus estados una posición en orden creciente. Si queremos visualizar el estado de los registros en el display, a continuación pulsaremos el botón RCLK/STROBE.

Pruebas del 74HC595

Para que funcione el registro de desplazamiento, el hilo SRCLR/RESET tiene que estar conectado a nivel alto (+5V), si lo conectamos a GND se inicializarán todos los registros poniéndose a cero (Reset).

Salta el diferencial sin motivo aparente (causa y solución)

Posibles causas del salto de un disyuntor diferencial cuando no estamos en casa. Detalles del funcionamiento de un disyuntor diferencial, monofásico y trifásico, comprobando su correcto funcionamiento. Sobretensión en una instalación trifásica cuando falla el neutro, y modo de proteger la instalación mediante un circuito de protección casero. Detalles de funcionamiento del módulo de control MT53RA, montado en un diferencial trifásico de 40A. Modos de funcionamiento de un diferencial rearmable, y comprobación del ciclo completo con sus tiempos de rearme.

Sistemas de protección eléctrica

En los cuadros de distribución eléctrica se instalan dos sistemas de protección:

  1. Magnetotérmico: destinado a la protección de la propia instalación eléctrica y los equipos conectados.
  2. Diferencial: destinado a la protección de personas frente a posibles descargas eléctricas.

Magnetotérmico

El interruptor magnetotérmico es un dispositivo diseñado para proteger tanto la instalación eléctrica como los aparatos conectados a ella. Los magnetotérmicos incluyen dos sistemas de protección:

  • Protección Magnética  – respuesta rápida frente a cortocircuitos: Consiste en una bobina colocada en serie con la corriente que circula a través del interruptor/disyuntor. Esta protección se activa cuando circula una intensidad de corriente entre 5 y 10 veces superior a la nominal. Este margen evita que se dispare la protección durante la fase de arranque de algunos dispositivos de potencia (principalmente motores).
  • Protección Térmica – respuesta lenta frente a sobrecargas: Consiste en una lámina bimetálica, la cuál se curvará en mayor o menor medida en función de la cantidad de corriente que circule por ella, provocando así un disparo de respuesta lenta. El sistema de protección térmica se dispara cuando se sobrepasa la corriente nominal durante un tiempo, protegiendo así la instalación  eléctrica  por sobrecarga.

Diferencial

El interruptor diferencial tiene como misión evitar que una persona que toque un conductor de la instalación se pueda quedar electrocutada, al circular una intensidad de corriente peligrosa (>30 mA) a través de su cuerpo a tierra. En instalaciones de tipo industrial, cuando los equipos conectados no son manipulados por personas, la protección diferencial se instala para proteger los equipos frente a posibles averías, al circular la corriente a tierra cuando existe alguna derivación eléctrica (normalmente por humedad excesiva o inundación). En estos casos, la corriente de disparo por derivación puede superar los 30mA, y se suelen utilizar diferenciales de mayor corriente (normalmente 300 mA).

Funcionamiento del diferencial

El interruptor diferencial se conecta al inicio de la instalación,  con el fin de proteger a las personas cuando manipulan en el cuadro eléctrico (conectar o desconectar algún magnetotérmico). Un interruptor diferencial mide la corriente que entra y sale del circuito, para así determinar si entra y sale la misma intensidad. Esta medida se realiza con un pequeño transformador de corriente, compuesto por un anillo de ferrita, el cuál traduce en tensión la diferencia de flujo magnético que lo atraviesa, entre el hilo de Fase y Neutro (ver imagen anterior). Si existe una diferencia de corriente entre ambos hilos (Fase-Neutro) superior a la nominal (>30 mA), la tensión inducida en el bobinado secundario provoca el disparo del mecanismo que mantiene conectados los contactos entre la entrada y salida del diferencial.

El interruptor diferencial dispone de un pulsador Test, con el fin de comprobar su correcto funcionamiento. El pulsador conecta una pequeña carga entre el hilo de salida de la Fase y el de entrada del Neutro. Cuando se pulsa el botón, la corriente que circula  por la resistencia (>30 mA) pasa a través del anillo toroidal en un solo sentido y se provoca el disparo del diferencial.

¿Por qué se dispara el diferencial de forma aleatoria?

La normativa actual obliga a los fabricantes de electrodomésticos a que sus equipos no inyecten ruidos radioeléctricos ni armónicos en la red. Por este motivo, todos los equipos modernos incorporan a su entrada un filtro de red. Este filtro pasivo de tipo ‘paso bajo‘ elimina cualquier interferencia o frecuencia armónica que pudiera producir el electrodoméstico. Los filtros de red eliminan estas señales mediante condensadores colocados entre ambos polos de la salida del filtro y tierra (ver imagen siguiente).

Disparo del diferencial sin motivo aparente

Dichos condensadores provocan al mismo tiempo una pequeña corriente de derivación a tierra, cada vez que conectamos un electrodoméstico en la instalación… y todas estas corrientes se suman creando una corriente residual y permanente en la instalación (<30 mA). El problema es cuando a la entrada del cuadro eléctrico no llega una señal pura, sinusoidal a 50/60 Hz y libre de armónicos. En estos casos, como los condensadores de los filtros de red  permanecen conectados aunque los electrodomésticos estén sin funcionar, se produce un incremento en la corriente diferencial que circula a través del cuadro eléctrico… y se provoca el disparo del interruptor diferencial.

Instalación trifásica

En un cuadro de distribución trifásico existe un riesgo añadido, y es el de sobretensión en caso de que falle la conexión del cable de Neutro. Si no existe una conexión del Neutro entre el centro de transformación (compañía eléctrica) y la instalación, se provoca un desequilibrio en las tensiones de las 3 fases (ver imagen siguiente).

Fallo del NEUTRO

Si las cargas entre fases no son idénticas, la tensión en cada fase cambiará en función de su carga. La fase que esté más cargada tendrá una tensión más baja de lo normal, y en la fase menos cargada subirá la tensión. Si esto sucede, lo normal es que los equipos conectados a la fase menos cargada empiecen a quemarse por sobretensión. Si los equipos averiados acaban por desconectarse de la red (rotura de fusibles o cables de conexión), la carga en dicha fase será todavía menor y como consecuencia aumentará la tensión en dicha fase… provocando una reacción en cadena hasta que se queme el último equipo conectado.

Aunque existen módulos de protección contra sobretensión para instalar en los cuadros eléctricos, como no tenía espacio libre, decidí fabricar una protección de tipo ‘casero’ para proteger los equipos frente a un posible fallo del Neutro.

Circuito de protección contra sobretensión

Este sistema de protección consiste en provocar una corriente diferencial alta en la instalación, en caso de que la tensión en alguna de las fases supere los 270V. Se instala un circuito idéntico por fase. Cuando la tensión de entrada en alguna de las fases supera la tensión del varistor (250V) la corriente alterna rectificada por el diodo y condensador llega al relé de 24 VDC, provocando el cierre de sus contactos. La conexión entre Fase y tierra de la resistencia de 4K7 provoca una corriente diferencial >30 mA,  se dispara el interruptor diferencial y se corta el suministro eléctrico.

Tipos de interruptor diferencial

Un interruptor diferencial puede ser monofásico (2 polos) o trifásico (4 polos), para una intensidad de corriente máxima determinada (25A, 40A, etc.) y para una corriente de disparo diferencial fija o variable. Los diferenciales de uso doméstico, pensados para la protección de personas, son de 30 mA. Aparte de estos parámetros básicos, existen diferentes ‘Clases’ dependiendo del tipo de respuesta y funcionamiento. Para uso doméstico, normalmente se utilizan las siguientes clases:

  • Clase AC: sólo detecta las fugas de corriente alterna, y son los que normalmente se instalan en las viviendas.
  • Clase A o inmunizado: incluyen la detección de corriente continua pulsante, y están pensados para evitar los saltos intempestivos más frecuentes.
  • Clase A “si”  o superinmunizado: es un diferencial del tipo A mejorado. Evita las desconexiones intempestivas por corrientes de alta frecuencia y saltos intempestivos debidos a elementos externos a la instalación que protege.

Rearme del diferencial

El diferencial Clase A “si”  o superinmunizado, aunque no está contemplado en la Reglamentación Electrotécnica de Baja Tensión (REBT) es la solución cuando se producen disparos frecuentes del diferencial sin motivo aparente. El único problema es que  suelen incorporar como protección contra sobretensión varistores… y si se avería alguno, te tocará cambiar el diferencial completo. Teniendo en cuenta que existen módulos externos para proteger la línea contra sobretensión con filtros de RF, los cuáles se pueden intercalar a la entrada del diferencial, un diferencial de Clase A podría ser la mejor elección. En caso de que su protección no fuera suficiente, siempre se podrían montar protecciones y filtros externos… sin tener que comprar un diferencial nuevo.

Interruptor diferencial rearmable

Cuando se dispara la protección diferencial, en la mayoría de los casos se soluciona el problema con una simple reconexión manual, ya que no se trata de una fuga permanente. Si esto sucede cuando estamos de vacaciones, la falta de suministro eléctrico se puede convertir en un gran problema: los alimentos se estropean en el frigorífico, las plantas se secan por falta de riego,  el sistema de alarma no funciona, etc. Un diferencial rearmable garantiza la continuidad del suministro eléctrico, evitando pérdidas económicas.

Módulo de reconexión MT53RA

El módulo de reconexión MT53RA es un módulo independiente del diferencial, y podría controlar un magnetotérmico o un diferencial, monofásico o trifásico, siempre que pueda acoplarse el mando del disyuntor con su leva de actuación.

MT53RA acoplado en el diferencial

El módulo MT53RA tiene que alimentarse desde la entrada del disyuntor a controlar, ya que necesita estar alimentado cuando se dispara la protección. Este módulo puede controlarse a distancia mediante 2 pulsadores, permitiendo la conexión o desconexión cuando está en modo Automático. Cuando se actúa en algún pulsador, se deshabilita el rearme automático. Para volver a modo Automático, es necesario pasar a modo Manual y volver a modo Automático (Reset).

Conexiones y ciclos de rearme

El  MT53RA puede funcionar en modo Manual o Automático, y dispone de una tercera posición de bloqueo, que permite bloquear el mando para que no se pueda accionar de forma involuntaria. En esta posición, por la parte inferior del mando aparece un orificio para bloquer el mando con un candado o brida, y evitar riesgos cuando se están efectuando trabajos eléctricos en la instalación.

MT53RA modos de funcionamiento

En mi caso, como ya tenía montada la protección ‘casera’ contra sobretensión y no salta el diferencial con demasiada frecuencia, he optado por montar un interruptor diferencial de Clase A rearmable. De esta manera no tendré que preocuparme cuando salte el diferencial sin estar en casa, porque se rearmará solo… y en caso de avería (3 rearmes consecutivos en menos de 6 minutos) se desconectará de forma permanente protegiendo la instalación.

 

 

LUZ ELECTROLUMINISCENTE

La electroluminiscencia es un fenómeno óptico y eléctrico, en el cual se genera luz a partir de una corriente eléctrica. Los materiales electroluminiscentes son aquellos que contienen una cierta cantidad de fósforo y emiten una luz al paso de una corriente eléctrica. Se analiza el funcionamiento de un panel gráfico, con control de sonido y también se realizan pruebas con hilos electroluminiscentes de diferentes colores.

Funcionamiento

Capas EL

Los iones activadores actúan como emisores o centros luminiscentes y poseen niveles energéticos que pueden ser activados por excitación directa o indirecta, por transferencia de energía a través de algún lugar de la estructura del material portador para que la emisión de luz ocurra. Un fósforo adecuado debe absorber la energía de excitación, y después emitir luz rápida y tan eficiente como sea posible. El tiempo que transcurre entre la excitación y la emisión debe ser lo suficientemente pequeño para evitar destellos. La excitación de los fósforos se consigue mediante la aplicación de campos eléctricos intensos a altas frecuencias.

Luz electroluminiscente

Ventajas

  •  Bajo consumo de corriente
  • Vida larga, hasta de 50,000 horas
  • Regulación propia, por lo que no se requiere un circuito de control
  • Emisión de luz omnidireccional
  • Opera en un rango de temperatura amplio, desde -60°C hasta 90°C
  • Pueden usarse en exteriores

Consumo de la placa EL

Inconvenientes

  • Emisión de luz limitada.
  • No hay una gran variedad de colores.
  • Poca eficiencia, alrededor de 2..6 Lm/W
  • Se requieren altos voltajes, desde 60 V hasta 600 V

Alimentación placa EL

Hilo electroluminiscente (Wire EL)

Luminosidad del hilo EL

La estructura del hilo EL (Wire) consiste en un núcleo conductor de cobre que funciona como electrodo, el cuál está cubierto con un material fósforo y a su vez está cubierta por un forro de plástico transparente. Unos hilo muy fino en espiral se encuentra alrededor del forro de plástico transparente. Este cable funciona como un segundo electrodo. Finalmente, ese forro de plástico transparente puede estar cubierto por otro forro de color. Cuando se aplica una diferencia de potencial, la capa fósforo emite luz entre los espacios de los cables al crearse un campo eléctrico.

Hilo electroluminiscente

Circuito inversor

El inversor que se usa en el hilo EL sirve para proporcionar la frecuencia necesaria para que brille. Cuanto más alta sea la frecuencia, mayor brillo proporcionará el hilo y su vida útil se reducirá; en cambio, si la frecuencia es menor, el brillo se reduce pero su vida útil aumenta.

Alimentación del hilo EL

Por supuesto, deberá escogerse el inversor dependiendo de la longitud del cable y de la frecuencia que quiera emplearse.

 

¿Cómo funciona un foco LED?

Desmontaje de un foco LED averiado, con el fin de conocer el por qué ha fallado con apenas un mes de uso. Se analiza el funcionamiento del circuito de control del foco LED, buscando la información técnica del fabricante. También se realizan medidas en otro foco nuevo de las mismas características que el averiado, con el fin de comprobar si realmente es un foco de 15W (según el vendedor)… posible estafa, o despiste del vendedor.

XL6001 – Controlador de corriente constante

Se desmonta el foco LED para comprobar el circuito de control que lleva montado en su interior.

PCB: XL6001

Este foco LED puede ser alimentado con tensión continua o alterna, ya que incluye un puente de diodos a la entrada, y puede funcionar con apenas 3,6V en su entrada. Con una  tensión ligeramente superior a 2 voltios ya se enciende el LED, pero con menos brillo.

XL6001 - Control LED

Como se puede ver en el esquema anterior, el circuito integrado XL6001 es un controlador de corriente constante. El valor de la resistencia en serie con el diodo LED, es el que determina la corriente de trabajo. El valor de la resistencia de este circuito, está configurado para que suministre al LED una corriente constante  de 256 mA.

Medidas en un foco de 15W

Se realizan medidas de potencia en un foco nuevo de 15W (MR16), con el fin de comprobar si la potencia que indica el fabricante en su envoltorio, es la potencia consumida por el foco,  o es la potencia suministrada al diodo LED (potencia efectiva).

Potencias LED ( consumida y efectiva )

Se comprueba que existe una gran diferencia entre la potencia que indica el fabricante y la potencia medida. Aunque esto suele ser habitual, en este caso la diferencia es excesiva.

Localización de la avería

Antes de desmontar de todo el foco LED, se alimenta con una fuente de alimentación de 12V y se mide la tensión en los puntos de soldadura del diodo LED (desmontando el cristal y el cono reflector del frontal). Al diodo LED le llegan 51 voltios, por lo que se determina que el problema está en el propio diodo LED. Este foco LED está compuesto por 10 pequeños diodos en serie, los cuáles se hacen visibles dentro del encapsulado de gel amarrillento. Uno de los 10 puntos de color gris está casi negro, por lo que se supone que se trata de un LED quemado.

Reparación LED

Se retira el gel que cubre el diodo más negro, se elimina el diodo quemado y se realiza un puente entre sus terminales. De esta manera, el foco LED se compone de 9 diodos en serie, en lugar de 10. Pero como el foco incluye un circuito de corriente constante, la tensión de alimentación se adaptará perfectamente al número de diodos LED que se conecten en serie.

Potencia LED después de reparar

La corriente que circulará por los diodos será la misma, y lo único que se notará es una ligera pérdida en la luminosidad del foco LED… un 13% según las medidas realizadas.

Más detalles en el video siguiente:

El DIAC, comprobador de diodos (v2)

Se realizan algunas modificaciones en el comprobador de diodos, para poder medir diodos de tipo DIAC, así como los diodos ZENER de más de 25V. Un DIAC es un diodo bidireccional autodisparable, o DIodo para Corriente Alterna. Este tipo de diodos se utilizan normalmente para controlar el punto de disparo de un TRIAC, con el fin de modificar el ancho de impulso de una señal alterna.

Curva DIACEl DIAC no tiene polaridad y se comporta de manera similar a diodos ZENER de la misma tensión conectados en serie, uniendo sus ánodos o cátodos como punto común y quedando los otros dos terminales para su conexión. En este caso, el conjunto conduciría en ambos sentidos, pero sólo cuando la tensión fuera superior al valor del ZENER. Un DIAC funciona casi igual, pero su tensión de disparo está en torno a los 30V, y cuando se supera este umbral conduce  como un diodo normal, manteniéndose así mientras no baje la tensión por debajo de 20V aproximadamente (dependiendo del tipo y fabricante).   El comportamiento de un DIAC es similar al de una lamparita de neón.

Más detalles de la primera versión del comprobador de diodos:

Comprobador de diodos – Diode tester

Comprobador de diodos (v2)

Este comprobador de diodos funciona de manera diferente al anterior. El primero mantenía una tensión máxima al conectar su alimentación, y con el potenciómetro de ajuste se regulaba la corriente máxima de salida. Con esta versión, el potenciómetro ajusta el valor de la tensión de salida, variando también la corriente que circula por el diodo bajo pruebas. Pero en este circuito es necesario limitar la corriente máxima de salida, por lo que se incluye un circuito limitador de corriente. Al poder variar la tensión de salida con el potenciómetro de ajuste, es posible comprobar la tensión de disparo de un DIAC.

XL6009 (Step Up Converter)El módulo Step Up Converter MT3608, se ha sustituido por el módulo XL6009. El módulo XL6009 permite subir la tensión de salida hasta cerca de 50V, así es posible llegar a la tensión de disparo de un DIAC y comprobar diodos ZENER de más de 25V.

Esquema: Comprobador de diodos (v2)

Limitador de corriente

El circuito limitador de corriente está construido a partir de un regulador de tensión de 5V (7805), conectando sus terminales de una forma especial (ver esquema). El terminal de salida + del comprobador se conecta al punto común del regulador, el cuál se conectará a masa a través del diodo bajo prueba. Entre el terminal de salida del regulador y su terminal de referencia, se conecta una resistencia de 220 ohmios. El valor de esta resistencia es el que determina la corriente máxima, y se calcula según la Ley de Ohm (R=V/I). Siendo V la tensión del regulador y colocando una resistencia de 220 ohmios, la corriente máxima a la salida de este comprobador será 22,7 mA (5/220). Este valor de corriente máxima es aproximado, porque depende de la tolerancia de los componentes utilizados.

Si no consigues entender el funcionamiento de este circuito limitador de corriente, junta las puntas del comprobador simulando un cortocircuito y revisa de nuevo el circuito resultante… la corriente que circula por la resistencia de 220 ohmios, cierra a masa a través del cortocircuito que acabas de hacer.