Mini cargador de baterías, regulable de 5A

Construcción de un pequeño cargador de baterías, regulable en tensión y corriente, aprovechando una fuente de alimentación reciclada. El módulo de ajuste y control de carga, está basado en el circuito integrado XL4015 (Step-Down Converter), que permite funcionar con unos valores máximos de 36V y 5A. El conjunto lo he montado en una caja hecha a medida, fabricada con la impresora 3D en PLA.

Gearbest JGAURORA A5 Updated Large Printing Size 3D PrinterJGAURORA A5 Impresora 3D de gran tamaño de impresión

Regulador de tensión XL4015

El circuito integrado XL4015, es un regulador de tensión de bajas pérdidas, que permite funcionar con una tensión y corriente máxima de 36V/5A. La regulación de tensión se realiza modificando el ancho de impulso (PWM) de una señal de alta frecuencia, consiguiendo así un rendimiento muy alto  (>80%).

Chip XL4015

El XL4015 regula la tensión de salida mediante la comparación de una muestra de la tensión de salida y su referencia interna de 1,25V.

Step-Down Cnverter XL4015

Modificando los valores del divisor de tensión a partir de la tensión de salida (ver la fórmula en el esquema), es posible obtener una tensión estabilizada dentro de un amplio margen de tensiones. La tensión máxima de salida será la de entrada, menos algunas décimas de voltio, y la tensión mínima será la tensión de comparación del XL4015 (1,25V).

Cargador de baterías con el XL4015

A partir del circuito integrado XL4015 se puede construir un circuito de control para cargar cualquier tipo de batería, porque tiene un amplio margen de tensión-corriente, y ambos valores son regulables.

Módulo cargador de baterías XL4015

Actualmente se puede conseguir este módulo de control de carga a bajo precio, montado en una pequeña placa de circuito impreso.

Módulo cargador de baterías, con XL4015

Analizando el esquema de este módulo de carga con el XL4015, podemos ver lo fácil y barato que resulta construir un cargador de baterías ajustable en tensión y corriente, Sólo tendríamos que sustituir las 2 resistencias ajustable por 2 potenciómetros, y montarlos en el frontal de una caja junto con sus 3 indicadores LED.

Este mismo circuito también se puede comprar con el XL4005 en lugar del XL4015. El módulo con el XL4005 sería totalmente compatible para realizar este montaje, lo único que cambia es que la tensión de comparación del XL4005 es de 0,8V en lugar de 1,25V. Así la tensión mínima que obtendríamos con el XL4005 será 0,8V.

Cargador de baterías regulable

Para fabricar este cargador de baterías, nos haría falta una fuente de alimentación y un medidor de tensión/corriente.  Yo he utilizado una fuente de alimentación de 19,5VDC, recuperada de una impresora HP Deskject 940C. El medidor de tensión/corriente que he montado, es un analizador de energía eléctrica muy completo.

Medidor de energía eléctrica

 

Este analizador de energía eléctrica es muy adecuado para este montaje, porque muestra datos muy útiles para conocer el estado de carga de la batería: su capacidad, consumo, potencia, tiempo de carga, etc.

Caja a medida con PLA

A pesar de que existen muchos modelos y tamaños de cajas donde podríamos montar este cargador de baterías, he preferido hacer una caja a medida con la impresora 3D.

Caja con PLA

Descargar fichero .stl

Tiny battery charger, adjustable 5A

Hacer la caja de un cargador de baterías con PLA, quizás no sea lo más adecuado para obtener un acabado profesional y robusto. Pero como este cargador lo voy a utilizar de forma ocasional y no me importa mucho su aspecto, el PLA es una buena solución.

Construye una barra LED

Construcción de una barra de diodos LED de 8W, para mejorar la iluminación en una mesa de taller. Posibles alternativas a la hora de elegir el circuito driver de corriente más adecuado para los diodos LED. Detalles de funcionamiento y pruebas comparativas con 2 driver de corriente diferente.

Construcción de la barra LED

Como soporte de la barra LED, se utiliza un perfil de aluminio en forma de ‘U’. El ancho del perfil es de 2,5 cms. y sus laterales de 2 cms. La longitud del perfil de aluminio es de 2 metros, pero se corta a 1,60 metros. En total se montan 8 diodos LED de 1W, separados 20 cms. entre ellos.

Soporte de aluminio para la barra LED

Los diodos LED se sueldan en una pequeña placa, que hace las funciones de soporte y disipador. Esta placa dispone de 6 contactos, 2 para soldar el diodo LED y otros 4 para realizar las conexiones. Antes de soldar los diodos LED, es importante aplicar pasta térmica en su base metálica y mantener el diodo presionado contra el soporte mientras se realiza la soldadura. Un buen contacto térmico es decisivo para no acortar la vida útil del diodo LED.

Detalles de conexión en la barra LED

Los soportes de cada diodo LED se fijan al perfil de aluminio, aplicando también pasta térmica, y se sujetan con dos tornillos de métrica 3. Para facilitar el apriete, se utilizan separadores metálicos de 1 cm de longitud en lugar de tuercas, y se intercala una arandela de material aislante para evitar contactos entre el separador/tuerca y los puntos de conexión del diodo LED. La conexión de los 8 diodos LED es en serie, conectando el anódo de un diodo con el cátodo del siguiente. El ánodo y cátodo libre de los diodos extremos, serán los puntos de conexión con el driver de corriente.

Driver de corriente constante

Los diodos LED utilizados en iluminación, deben estar alimentados con fuentes de corriente constante. De otra manera, las fluctuaciones de tensión en el suministro podrían ocasionar bajos rendimientos lumínicos cuando cae la tensión, o averías prematuras cuando se producen picos de sobretensión.

Componentes para la barra LED

Dependiendo de la tensión de suministro, ya que podría ser con baterías o con la red eléctrica, habrá que elegir el driver adecuado. En la siguiente imagen se muestra el esquema de dos tipos de driver de corriente, uno para funcionar a 12V y el otro para conectarlo a la red eléctrica.

Comparativa, controladores de corriente constante

 

La corriente de funcionamiento de los driver no es ajustable, viene prefijada de fábrica y hay que elegirla en función de la corriente de trabajo y el número de diodos LED en serie que se utilicen. En este caso, la corriente de los diodos LED es entre 250 y 300 mA. Este margen de corriente es la aconsejable por el fabricante para obtener un rendimiento lumínico adecuado, sin acortar la vida útil del diodo. Como es lógico, si los diodos los hacemos funcionar con su corriente mínima aconsejable (250 mA), se calentarán menos los diodos LED y se asegura su vida útil.

Medida de la corriente en la barra LED

A pesar de que la corriente de trabajo de un driver de corriente comercial no es ajustable, se puede modificar sustituyendo el valor de alguno de sus componentes. En ambos esquemas, el ajuste de corriente lo determinan el valor de una resistencia.

Modificar la corriente del driver

Esta barra LED se va a utilizar conectada a la red eléctrica, y se modifica el circuito para fijar la corriente de trabajo a 250 mA. La modificación consiste en eliminar la resistencia RS2 de 4,7 ohmios del circuito (ver imagen anterior).

Todos los detalles de montaje y ajustes, se muestran en el siguiente video:

¡Maldito foco LED! – Damn LED spotlight!

Avería de un foco LED de 12V, después de 72 horas de funcionamiento continuo. La reparación anterior se hizo sustituyendo la matriz LED original del foco,  por 4 diodos LED SMD de 1W en serie. Debido a un mal contacto térmico de los diodos con el bloque disipador del foco, uno de los diodos se quemó. Se vuelve a reparar el foco, mejorando mecánicamente el contacto térmico de los diodos con el disipador, y reduciendo ligeramente su corriente de trabajo.

A pesar de que este tipo de reparaciones no compensa, decido acabar con la reparación que comencé, ya que no dio buen resultado. Como era de esperar, uno de los 4 diodos LED se ha quemado, provocando el apagado del foco. Teniendo en cuenta que la corriente de trabajo de este foco es de 256 mA, corriente dentro de los límites del LED utilizado, el problema puede estar relacionado con la mala disipación térmica.

Reparación

La reparación consiste en sustituir el diodo LED quemado por uno nuevo, y unir de nuevo la serie de 4 diodos con masilla de dos componentes. Con el fin de mejorar el contacto térmico con la carcasa del foco, ya que esta hace de disipador, en esta ocasión el conjunto de los 4 diodos lo monto sin utilizar la placa soporte del diodo original. Una vez seca la masilla, es conveniente aplanar todo el conjunto con una lija de grano fino (imagen siguiente).

Aplanado LED

Reducir la corriente del LED

A pesar de que la corriente de trabajo del foco (256 mA) está dentro del margen de funcionamiento de los diodos LED utilizados (250 – 300mA), decido reducir ligeramente su valor. El circuito de control ajusta la corriente de trabajo con 2 resistencias en paralelo, una de 1 ohmio y la otra de 6,2. Al eliminar la resistencia de 6,2 ohmios, la corriente del circuito se reducirá de 256 mA hasta 220 mA.

Ajuste de corriente del foco LED

A pesar de que esta corriente no varía mucho con respecto a la original (-13%), la temperatura de funcionamiento del LED se reducirá bastante… pero también caerá de forma exponencial el rendimiento lumínico del diodo LED.

Rendimiento lumínico

Después de reparar el foco y modificar su  corriente de funcionamiento, realizo una prueba comparativa del rendimiento lumínico. Esta medida de luminosidad no sirve para conocer el valor real en lúmenes del foco LED, pero nos permite conocer la relación que existe entre el valor de la reducción de corriente y su pérdida de luminosidad.

Rendimiento lumínico

Como podemos apreciar en la imagen anterior, al reducir la corriente del LED en un 13%, el rendimiento lumínico se ha reducido en un 50%.

 

 

Foco LED mal diseñado, ¿estafa? – Spotlight LED bad designed, scam?

Avería de un foco LED de 12V/15W, después de un mes de uso normal. Se desmonta la matriz LED con el fin de conocer el motivo de su corta duración. Como esta es la segunda vez que se quema un LED de la matriz, se realiza un análisis a fondo de su construcción, detectando que tiene un fallo de diseño. Al final se sustituye la matriz LED original por 4 diodos LED SMD de 1W de tipo CREE. Finalmente se realizan medidas comparativas de consumo y rendimiento lumínico, comparando el foco reparado con otro nuevo igual que el averiado.

¿Cómo funciona un foco LED?

Construcción de la matriz LED

El diodo LED de este foco está compuesto por una matriz de 10 diodos. Es un montaje de 5 diodos en paralelo, dos a dos, y estos 5 conjuntos montados en serie.

Interior del LED

El problema que existe con este montaje, es que el fabricante no puede emparejar los diodos que van montados en paralelo, ya que están impresos en la matriz y no van montados en una cápsula de forma independiente. En estas condiciones, es muy difícil que la corriente que circula por cada diodo sea idéntica a la que circula por el otro que va conectado en paralelo. Así siempre iluminará uno de ellos más que el otro, y tendrá que soportar una corriente mayor a la calculada. Si el fabricante no contempla esta posibilidad, y monta diodos ajustados a la corriente que ha calculado, lo normal es que acabe por quemarse alguno de los diodos.

Esquema del Foco LED

En el esquema del foco LED se puede ver que el circuito de corriente constante está ajustado para 256 mA. Así circulará una corriente de 128 mA por cada diodo. Si alguno de los diodos se quema por exceso de corriente, se abrirá, obligando al otro diodo que va montado en paralelo  a soportar los 256 mA de la serie. Como cabe suponer, este segundo diodo también se quemará y dejará de lucir toda la matriz LED.

Reparación del foco LED

En la mayoría de los casos no compensa reparar un foco LED. El precio del repuesto y la mano de obra, suele ser superior al precio de compra de un foco nuevo. A pesar de esto, si ya disponemos del repuesto y lo hacemos como hobby, es muy satisfactorio repararlo… o por lo menos intentarlo. En este caso la reparación consiste en sustituir la matriz LED. Una solución alternativa es montar una serie de diodos LED de potencia en lugar de la matriz. Como este foco está alimentado a 12V, es necesario que la tensión de funcionamiento de la serie de diodos sea ligeramente superior a 12 V. En caso contrario, el circuito de control no podría limitar la corriente y se quemarían los diodos.

LED de 1W

Si tenemos en cuenta que este foco de 15W, en realidad es de 5W, podemos obtener una luminosidad parecida montando 4 diodos LED en serie de 1W. Como es lógico, estos diodos deben estar dimensionados para funcionar con una corriente de 256 mA, ya que es la que suministra el circuito de control del foco.

Foco modificado

Para sustituir la matriz LED original por 4 diodos, hay que asegurar que el contacto térmico del conjunto con la base de aluminio sea bueno. Yo he optado por crear un bloque con los 4 diodos, utilizando masilla de 2 componentes, mas conocida como barra arregla todo. Antes de aplicar la masilla, es muy importante poner pasta térmica en la base de cada diodo LED.

Luminosidad del foco LED

Después de la reparación, decido hacer una prueba comparativa de luminosidad entre el foco reparado y otro foco LED nuevo. El resultado es favorable al foco reparado, porque el consumo es de 4W en lugar de 5W, y la luminosidad es un 16% superior a la del foco original.

 

Capacidad real de una batería con ARDUINO

Medir la capacidad real de una batería con ARDUINO. Para que este sistema pueda funcionar de forma autónoma (sin PC), se utiliza el módulo ‘LCD Keypad Shield’ para mostrar la información en su display. Midiendo la capacidad real de una batería nueva, podremos saber la fiabilidad del fabricante y además calcular el tiempo de funcionamiento que tendrá cualquier dispositivo que utilicemos con dicha batería.

LCD Keypad Shield - Esquema
LCD Keypad Shield – Esquema

El módulo ‘LCD Keypad Shield’ está diseñado para poder insertarlo encima del módulo ARDUINO, sin la necesidad de realizar ninguna conexión adicional. Como podemos ver en el esquema anterior, este módulo LCD  transfiere las entradas/salidas de ARDUINO que no utiliza (incluso el conector ICSP y el pulsador RESET) hacia su circuito impreso, permitiendo la inserción de conectores para poder utilizar estas conexiones sin tener que soldar cables en el módulo ARDUINO. LCD Keypad Shield dispone de 6 pulsadores, el pulsador Reset y 5 más para realizar maniobras, así como un diodo Led para indicar cuando está alimentada la placa. Los 5 pulsadores de maniobras están conectados a una red de resistencias alimentadas con 5V, y la salida va conectada a la entrada analógica ‘0’ de ARDUINO. Dependiendo del pulsador que se accione, aparecerá una tensión diferente en esta entrada analógica. Si leemos el valor desde ARDUINO utilizando la sentencia: analogRead(0), obtendremos un valor diferente con cada pulsación. Añadiendo una simple rutina en el código, podremos detectar la posición de cualquier botón. En la imagen anterior se muestran los valores que he medido en mi ARDUINO -tus medidas pueden variar ligeramente-, así como la rutina que podrías utilizar para detectar la pulsación de los botones.

LCD Keypad Shield & ARDUINO
LCD Keypad Shield & ARDUINO

El módulo LCD utiliza su propia tabla de caracteres (ROM), pero también dispone de 8 caracteres programables (RAM). Los caracteres programables los podemos utilizar para generar cualquier carácter o símbolo que necesitemos mostrar en la pantalla y no se encuentre en la tabla de caracteres (ROM) del display. En la imagen anterior se muestran los detalles para programar estos caracteres, así como las sentencias que se deben utilizar con la librería: LiquidCrystal.h en ARDUINO.

Sistema de medida: Capacidad real de una batería
Sistema de medida: Capacidad real de una batería

Para medir la autonomía de la batería, vamos a utilizar ARDUINO como cronómetro de precisión. La conexión/desconexión del cronómetro se realiza de forma automática, utilizando una entrada digital como control. El sistema de detección del estado de la batería será el incluido dentro del módulo TP4056 (módulo de carga para 3,7V con protección). El módulo TP4056  además controlar la carga de la batería, mostrando su estado mediante dos indicadores LED, desconecta la batería de cualquier dispositivo que conectemos a su salida cuando la batería llega a umbral mínimo de tensión (<2,5V).  Entre la salida de tensión del módulo TP4056 y ARDUINO conectaremos un pequeño interface, consistente en un transistor NPN, 2 resistencias y un condensador (ver esquema). Para facilitar el cálculo y obtener precisión en la medida, utilizaremos una carga electrónica para conseguir que la corriente permanezca constante, independientemente de la tensión que tenga la batería.

El cronómetro incrementará el contador de tiempo, siempre que tengamos tensión a la salida del módulo TP5056. Cuando el cronómetro se detenga podremos calcular la capacidad real de la batería, convirtiendo el valor de tiempo medido en horas y multiplicándolo por la corriente que hayamos seleccionado en la carga (la corriente en amperios para Ah). Es importante destacar que al final del ciclo de descarga, cuando el cronómetro se detenga, la carga se desconectará de la batería… y esta empezará a recuperarse más rápido o despacio dependiendo de la carga que le hayamos desconectado. Al subir de nuevo la tensión de la batería, llegará un momento en el que se supere el umbral de reposición del módulo TP4056, se conectará de nuevo y el cronómetro seguirá incrementando el tiempo. Cuando esto suceda, se producirán ciclos intermitentes de cadencia cada vez más larga, y al final se detendrá por completo. Si queremos conocer la capacidad de la batería con bajo consumo, podemos esperar hasta el final. Pero si necesitamos comprobar la autonomía con el consumo que hemos seleccionado en la carga (porque es el consumo de nuestro dispositivo), tendremos que hacer el cálculo cuando se desconecte el cronómetro por primera vez.

En la siguiente imagen se muestran las medidas comparativas que he realizado con dos baterías de origen chino, rotuladas con una capacidad de 9800 mAh. Las dos baterías son nuevas y pertenecen al mismo lote. Las medidas las he realizado con una corriente constante de 500 mA, y el tiempo que se muestra es el de la primera desconexión. Al medir la capacidad de dos baterías iguales, nos aseguramos que la batería que hemos utilizado no está defectuosa (ambas medidas son parecidas). Al realizar dos medidas utilizando la misma batería, comprobamos la precisión del sistema de medida que estamos utilizando (valores casi idénticos).

Resumen de las medidas
Resumen de las medidas

En la última línea se muestra la capacidad que he medido en otra batería de tipo TR 14500, de una ‘supuesta’ capacidad de 1200 mAh.

Medidas con umbral de tensión ajustable

Si queremos medir la capacidad de otros tipos de batería, con tensiones diferentes, o simplemente necesitamos comprobar el tiempo de funcionamiento de cualquier batería hasta llegar a una tensión umbral determinada, podríamos montar el circuito que se muestra a continuación.

Sistema de medida opcional, con umbral de tensión ajustable
Sistema de medida opcional, con umbral de tensión ajustable

Como podemos ver, sólo tendremos que sustituir el módulo de carga TP4056 por el circuito de control que se muestra en la imagen. Mediante el potenciómetro de ajuste (22K), fijaremos el umbral mínimo de tensión a la que se debe desconectar de la carga electrónica,  y detener la cuenta del tiempo (cronómetro).

Descargar el código de ARDUINO : Crono_Battery

Construye una carga electrónica

Construcción de una carga electrónica, muy útil para comprobar el estado de carga de pilas-baterías, así como el correcto funcionamiento de cargadores y fuentes de alimentación. Los amplificadores operacionales, teoría y sus diferentes modos de funcionamiento: comparador, amplificador, filtro, oscilador, buffer. La carga electrónica se alimenta con una fuente de alimentación estabilizada de 5 VDC, pudiendo utilizar un cargador convencional de tipo USB. Esta carga electrónica incluye un voltímetro y un amperímetro. Con el amperímetro comprobaremos la corriente de carga, a la vez que medimos la tensión que está entregando el dispositivo bajo prueba.

Esquema: Carga electrónica
Esquema: Carga electrónica

Los primeros circuitos operacionales se comenzaron a fabricar en la década de los ‘60, por la empresa Fairchild. Se utilizaban estos circuitos para construir unidades encargadas de sumar, restar, dividir, derivar, integrar, etc. De ahí viene el origen de su nombre: Amplificador Operacional.

El amplificador operacional consta de dos entradas V1 V2 y una sola salida Vout. En la salida se obtiene la diferencia entre las dos entradas, multiplicada por un factor de ganancia G.  Un amplificador operacional ideal tiene una ganancia G infinita, una impedancia de entrada infinita, un ancho de banda (rangos de frecuencias a los cuales puede operar) también infinito, una impedancia de salida igual a cero, y ningún ruido. Como consecuencia, si tiene una impedancia de entrada infinita, sus corrientes de entrada serán nulas. En la práctica, un amplificador operacional tiene un ancho de banda del orden de MHz, con impedancias de entrada de algunos MOhm y una ganancia típica de 100.000. Aún así, con una diferencia de tensión de 50uV en sus entradas, se pueden obtener 5 voltios en la salida.

Esquema por bloques de un amplificador operacional
Esquema por bloques de un amplificador operacional

Todos los amplificadores operacionales comparten una misma estructura interna:

  • Amplificador diferencial: es la etapa de entrada que proporciona una baja amplificación del ruido y alta impedancia de entrada.
  • Amplificador de tensión: proporciona una ganancia de tensión.
  • Amplificador de salida: proporciona la capacidad de suministrar la corriente necesaria, con una baja impedancia de salida, y normalmente protegida frente a cortocircuitos.
Ganancia de los amplificadores operacionales
Ganancia de los amplificadores operacionales

OPERACIONAL COMO AMPLIFICADOR

En circuitos con ganancias superiores a 100.000, es muy fácil que la tensión de salida (teórica) llegara a superar a la tensión de alimentación. Llegado a este punto, se dice que el amplificador está saturado.

Cuando la tensión aplicada a la entrada V+ comienza a subir, la tensión en la salida Vout también sube, ya que es función de la diferencia de tensión entre sus entradas. Si conectamos una realimentación (R) entre la salida y V, la tensión en la entrada V también subirá, de manera que la diferencia de tensión entre las dos entradas se reduce y disminuye la tensión de salida (ganancia). Así es como podemos definir y limitar la ganancia de un amplificador operacional.

Filtro y oscilador, con amplificador operacional
Filtro y oscilador, con amplificador operacional

OPERACIONAL COMO COMPARADOR

Un amplificador operacional se puede utilizar como comparador. Esta característica hace que un amplificador operacional sea útil como elemento para adaptar niveles lógicos, o pudiendo generar la señal de error de un comparador de fases en un circuito PLL.

Comparador de fases con operacional
Comparador de fases con operacional

OPERACIONAL COMO BUFFER-SEGUIDOR

Operacional seguidor
Operacional seguidor

Si conectamos un amplificador operacional de la manera que nos muestra la figura, obtenemos lo que se conoce como circuito seguidor o buffer. Con esta configuración se eliminan los efectos de cargas importantes en salidas y se adaptan las impedancias, al conectar un dispositivo con una gran impedancia a otro con una impedancia pequeña o viceversa. En este caso, la tensión de salida será igual a la tensión de la entrada y la impedancia de entrada, teórica, sería infinita.