Construye un Reloj SMD

Fabricación de un Reloj-Cronómetro-Temperatura, encadenando 4 módulos SMD de 7 segmentos con control serie. El controlador de este reloj está construido a partir del micro controlador AT89S52, con encapsulado TQFP de 44 pines (SMD).

Hora en el display

ESQUEMAS

CPU: Reloj SERIE

Display: Reloj SERIE

Módulo RTC: DS1302

Las comunicaciones entre el micro-controlador y el chip de reloj DS1302 se realizan mediante 3 hilos:

  1. Reloj (SCLK)
  2. Entrada/Salida de datos (I/O)
  3. Habilitación (CE)
Módulo RTC: DS1302
Módulo RTC: DS1302

El módulo RTC ya incluye el cristal de cuarzo que necesita el chip DS1302, y una pila de 3V para mantener sus datos cuando falta la alimentación. La conexión entre este módulo y la CPU es de 5 hilos, 2 de la alimentación y 3 de control.

Comunicaciones con DS1302
Comunicaciones con DS1302

Sensor de temperatura: DS18B20

El control de este sensor de temperatura es bidireccional y se realiza mediante un sólo pin, así su encapsulado sólo tiene 3 pines: VCC, GND y Datos.

Sensor: DS18B20
Sensor: DS18B20

El DS18B20 se puede comprar con encapsulado normal, su aspecto es el de un transistor, o ya montado dentro de una cápsula de acero inoxidable. El encapsulado en acero inoxidable permite sumergir el sensor en líquidos, y también es muy aconsejable para utilizarlo en el exterior.

El chip DS18B20 es un sensor temperatura digital,  su resolución es configurable entre 9 y 12 bits. Por defecto, de fábrica está configurado con 12 bits. A máxima resolución, sus últimos 4 bits se corresponden con las lecturas decimales de: 0,5°/ 0,25° / 0,125° / 0,0625°.  Puedes ver más detalles técnicos de este sensor en el siguiente artículo:

Firmware Reloj LED #2 (Temperatura, Hora de Verano)

FUENTE DE ALIMENTACIÓN

Para alimentar este reloj se necesita una fuente de alimentación de 12 VDC, con una corriente mínima de 200 mA. La solución más barata y eficaz, es incluir dentro de la caja del reloj una pequeña fuente de alimentación conmutada de 12V / 400 mA.

Fuente conmutada 12V

CONFIGURACIÓN

Para cambiar los datos de fecha, hora, cronómetro y el resto de parámetros de configuración, se utilizan dos pulsadores:

  1. MODE
  2. PLUS

Para modificar los datos del reloj, seguir el siguiente diagrama de configuración:

Configuración RELOJ SERIE

SELECCIONAR MODO: RELOJ/CRONÓMETRO

El modo de funcionamiento RELOJ/CRONÓMETRO se determina durante la fase de arranque, mientras se está mostrando en el display  un mensaje de texto rotando, en la que se muestra la versión del firmware. Si no se toca ningún pulsador, el modo de funcionamiento será: RELOJ. Para cambiar a modo CRONÓMETRO en cualquier momento, seguir los siguientes pasos:

  • Pulsar los dos botones a la vez: RESET
  • Cuando aparezca el mensaje rotante, mantener pulsado el botón 1 (MODE)

Cronómetro en el display

Una vez que que hayamos entrado en el modo CRONÓMETRO, ya podremos configurar sus parámetros de funcionamiento. Estos valores se guardarán en el chip de memoria del reloj (DS1302), y estos serán los nuevos valores de arranque del cronómetro. Al igual que sucede con los parámetros del reloj, tendremos que tener conectada la pila de tampón en el chip, si no queremos perder todos los datos cuando falte la alimentación.

Detalles de la presentación del Display

Cuando se está funcionando en modo RELOJ, es posible seleccionar entre 3 tipos de presentación. La información que muestra el display se cambia mediante una breve pulsación del botón 2 (PLUS):

  1. Hora / (*) Alterno: Hora y Temperatura
  2. Temperatura
  3. Alterno: Hora, Fecha y Temperatura

(*) El modo alterno de la presentación 1ª, se muestra en caso de que se active la alarma de temperatura en el menú de configuración. En caso contrario, la presentación 1ª mostrará la hora de forma permanente.

Temperatura en el display

Cuando se active el modo de presentación alterno, la temperatura se mostrará de forma síncrona con el reloj, y lo hará cada 5 segundos. Entre el segundo 5 y el 55 de cada minuto, nunca se mostrará en el segundo ‘0’ de cada minuto. La temperatura sólo aparecerá durante un segundo de cada 5, en total 11 veces en cada minuto.

Alarma de Temperatura

La lectura del sensor de Temperatura se realiza cada 10 segundos. De manera que entre dos presentaciones sucesivas de 5 segundos, sólo una de las lecturas será en tiempo real. Cuando está utilizando la presentación 1ª en modo alterno, los segundos acabados en ‘0’ mostrarán la temperatura leída anteriormente, excepto en el segundo ‘0’ de cada minuto que no se muestra. En el caso de que la temperatura sobrepasara alguno de los dos umbrales de alarma, el aviso acústico se realizará cuando el valor acaba de ser leído. Es decir, la alarma de temperatura sólo sonaría en los segundos acabados en ‘5’.

Alarmas horarias

El reloj permite configurar 2 alarmas horarias, sin prioridad entre ellas pero siguiendo este criterio: Cuando una de las dos alarmas se dispara, mientras permanezca en su periodo activo, la otra alarma nunca podrá dispararse. 

Las dos alarmas horarias pueden valer para los 7 días de la semana, o estar limitadas a los 5 días laborables, quedando inactivas todos los Sábados y Domingos. En modo RELOJ, el punto decimal del dígito de la derecha (esquina inferior derecha del display) esta asociado a la alarma horaria. Las alarmas horarias pueden configurarse para que suenen una sola vez (1 minuto si no se silencia antes) o con repeticiones. Las repeticiones se realizarán cada 5 segundos. Para silenciar el sonido de una alarma, realizar una breve pulsación en el botón 2 (PLUS). Si después de sonar una alarma se quieren anular todas sus repeticiones sin cambiar la configuración del reloj, es necesario pulsar los dos botones a la vez (RESET).

Estados posibles del LED indicador de alarma horaria:

  • APAGADO: No existe ninguna alarma horaria en las próximas 24 horas
  • PARPADEANDO: Existe alguna alarma horaria dentro de las próximas 24 horas.
  • FIJO: Alarma ACTIVA, sonando o dentro del periodo de repetición.

Hora: Verano/Invierno

En algunos países existen dos tipos horarios:

  1. Horario estándar, el que corresponde con el huso horario (Horario de invierno).
  2. Horario de verano:

El cambio de hora se aplica una vez al año, haciendo que del horario estándar (o de invierno) se pase al horario de verano. Aunque la primera vez que se aplicó este cambio de hora fue durante la Primera Guerra Mundial, dejo de aplicarse hasta la crisis del petróleo de 1973. El objetivo es el de aprovechar mejor la luz solar, consumiendo menos electricidad.

Cambios horarios (Invierno/Verano)
Cambios horarios (Invierno/Verano)

HORARIO DE VERANO

Último domingo de MARZO:  A las 2:00 AM  se adelanta a las 3:00 AM

… se adelante 1 hora el reloj

HORARIO DE INVIERNO

Último domingo de OCTUBRE: A las 3:00 AM  se atrasa a las 2:00 AM

… se atrasa 1 hora el reloj

FIRMWARE

El firmware de este reloj se programa una vez montado el micro controlador (AT89S52) en su circuito impreso, a través de su interface de programación serie ICSP. Lo ideal sería utilizar un programador que tuviera dicho interface, pero si no lo tienes, puedes hacerlo con ARDUINO.

Programador ICSP con ARDUINO

El archivo que necesitas para programar este reloj (firmware), lo puedes descargar de forma gratuita desde el siguiente enlace:

J_RPM_v1_RELOJ_SERIE.HEX

FABRICAR LA CAJA CON UNA CNC

Archivos para cortar la madera tipo DM de 10 mm, en una CNC, y fabricar la caja de este reloj:

Caja_CNC_RELOJ_.zip

Piezas cortadas para montar la caja

CIRCUITOS IMPRESOS (PCB)

Archivos GERBER para fabricar el PCB de la CPU:

PCB_CPU_RELOJ.zip

PCB: CPU del Reloj SERIE

Archivos GERBER para fabricar el PCB de la CPU (v2):

PCB_CPU2.zip

PCB: CPU del Reloj SERIE (Modificada)

En esta versión se corrige el tamaño de los taladros, se incluye la posibilidad de utilizar dos tipos de conector en sus salidas y se añade una toma auxiliar de +5V

Archivos GERBER para fabricar el PCB del Display ( 1 dígito de 7 segmentos):

PCB_Display_RELOJ.zip

PCB: Display 7 segmentos serie

Si quieres ver los detalles de fabricación, configuración y puesta en marcha de este reloj, echa un vistazo al siguiente video:

 

Reloj FC-209 – RECOPILACIÓN

Recopilación de todos los videos relacionados con el reloj LED (FC-209), explicando por encima lo que se puede encontrar en cada uno de ellos. Además se presenta la última actualización del firmware, tanto para el kit FC-209 como para el reloj de pared. También se crean ambas versiones de firmware con los textos en inglés.

RECOPILACIÓN

Construye un Reloj LED – EC1204B

Se describe el montaje del kit de reloj en una carcasa de plástico semitransparente, en la cual se alberga una batería de litio (recuperada de un PC), con el fin de alimentar el reloj de forma autónoma. Se empieza describiendo con el esquema y de forma básica el funcionamiento del reloj. Posteriormente se explica el funcionamiento del módulo ‘Step Up’, utilizado para elevar la tensión de la batería de litio y conseguir los 5V estabilizados que  alimentan el reloj. También se instala un módulo de carga TP4056 con protección, el cual se explicó con detalles entre el video Power Bank #1 y Linterna LED #2 – MEJORAS. Se mide el consumo del reloj, y se calcula la autonomía máxima de la batería, a partir de su capacidad. Finalmente se muestra la construcción de la serigrafía frontal, realizada con una CNC y se describe el funcionamiento y ajustes de este kit de reloj, utilizando el firmware con el que viene programado el reloj de fábrica.

Firmware para el Reloj LED: EC1204B

Se realiza un nuevo firmware para sustituirlo por el que viene instalado de fábrica, es la versión 1. Después de realizar un estudio de todo el hardware, se decide elevar la frecuencia del reloj de cuarzo, y sustituir el sensor de temperatura original DS18B20, por otro de mayor precisión. Al realizar estos cambios, la versión 1 del firmware no es compatible con el kit original, porque sería necesario sustituir estos dos componentes. Posteriormente se detalla a fondo el funcionamiento del chip DS1302, RTC o reloj en tiempo real, y se explica el proceso a seguir para reprogramar el micro-controlador utilizando el puerto ICSP (In-Circuit Serial Programming) que incorpora dicho kit. Finalmente se detallan todas las funciones y mejoras incorporadas en el nuevo firmware, explicando el modo de configuración y su funcionamiento.

Firmware Reloj LED #2 (Temperatura, Hora de Verano)

Se actualiza el firmware anterior, incorporando la posibilidad de que el reloj realice el cambio automático de la hora inverno/verano. Esta es la versión 2, y tampoco es compatible con el kit original. Se analiza a fondo el funcionamiento y comunicaciones entre el sensor de temperatura y el micro-controlador, comparando las diferencias que existen entre el sensor original DS18B20 y el instalado. Finalmente se calibra el sensor de temperatura mediante el menú de configuración y se detalla el proceso que sigue el reloj cuando tiene que actualizar la hora, estando apagado y encendido, comprobando también su funcionamiento.

Firmware Reloj LED #3 (Brillo nocturno)

Se actualiza de nuevo el firmware, incorporando la posibilidad de programar las horas en las que el display reduce su brillo. Con esto se evitan las molestias por exceso de iluminación, cuando se utiliza como despertador en una habitación oscura. Esta es la versión 3, y tampoco es compatible con el kit original. Se realizan de nuevo medidas de consumo del reloj, pero ahora con bajo brillo, y se calcula el incremento de la autonomía de su batería, debido a la reducción del consumo.

Firmware Reloj #4 (Compatible FC-209)

Debido a las numerosas peticiones que recibo, realizo un nuevo firmware totalmente compatible con el kit de reloj FC-209. Esta es la versión 4, y es la primera que se puede utilizar con el kit original. A pesar de que el sensor de temperatura original es menos preciso, con el DS18B20 se amplía el rango de medidas, pudiendo mostrar temperaturas entre -10 y 125ºC. Como existe la posibilidad de sustituir el chip de temperatura por otro externo con encapsulado metálico, es posible utilizar un sensor externo para medir la temperatura de componentes electrónicos o fluidos.

Cronómetro LED #5 (FC-209)

Se incorpora la posibilidad de utilizar el kit FC-209 como reloj o cronómetro. La opción de cronómetro se debe habilitar pulsando el botón central MODE, en la fase de arranque. En caso de no tocar nada, el módulo arrancará en modo reloj y tendrá las mismas funciones que tenía en la versión anterior, versión 4. Esta es la versión 5, y también es compatible con el kit FC-209. Una vez que se entra en el modo cronómetro, es posible configurar el modo del contador, pudiendo contar el tiempo hacia delante o hacia atrás. La resolución del cronómetro es de centésimas de segundos, mostrando este valor al final, en modo alterno cuando se detiene la cuenta.

Reloj LED de pared #1

Se muestra un nuevo diseño de reloj, utilizando las mismas características del kit FC-209, pero ampliando su tamaño para que pueda utilizarse como reloj de pared. Este firmware NO es compatible con el kit de reloj FC-209. Esta es la versión 6, exclusiva para este modelo de reloj, pero funciona exactamente igual que la versión 5 en el kit FC-209.

Al ampliar de tamaño el display, es mejor construir todo el frontal con diodos LED, en lugar de utilizar display’s de 7 segmentos. Con este aumento de tamaño se acentúa el efecto de parpadeo, provocado por la baja velocidad del procesador, por lo que se aumenta la frecuencia del cristal de cuarzo, igual que se hizo en  las 3 primeras versiones del firmware, pero en este caso se mantiene el mismo modelo de sensor de temperatura. Otra modificación, es el uso de una batería recargable en lugar de la pila de botón. En este firmware se habilita el control de carga de la batería tampón, a través del chip DS1302. Para poder alimentar más de dos diodos en serie, como es el caso, se necesita subir la tensión de alimentación por encima de 5V, por lo que también se necesita instalar un módulo Step-UP.

En el video se muestran los detalles de construcción del circuito impreso que se necesita, así como el ensamblado de los diodos led en el frontal y sus cableados. Finalmente se realizan las pruebas de funcionamiento.

Reloj LED de pared #2

Se construye la carcasa frontal del reloj de pared, y se monta un anclaje para poder colgarlo. También se muestra el grabado de la serigrafía y mecanizado del frontal, realizado todo con una CNC. Luego se pinta la serigrafía, y se muestra el reloj ya colgado y funcionando.

Termómetro digital para fluidos

Se utiliza un nuevo kit de reloj, para poder utilizarlo principalmente como medidor de temperatura de componentes electrónicos y fluidos. Se sustituye el chip de temperatura original, por otro externo del mismo modelo, pero encapsulado en acero inoxidable. También se realiza el mecanizado con la CNC, pero como en este caso se utilizará el kit con un  alimentador externo de 5V, su tamaño es bastante reducido y fácil de transportar. Finalmente se realiza el calibrado del sensor de temperatura, utilizando como referencia los 0ºC que tiene el hielo en fusión.

Firmware for LED Clock – ENGLISH

Debido a las múltiples peticiones que recibí de algunos seguidores no hispanos, hice una versión del último firmware del kit FC-209, pero traduciendo todos sus textos en inglés.

Última actualización del firmware del reloj LED

Se incorporan un par de sugerencias que he recibido en los últimos meses. La primera de ellas y la más solicitada, es la posibilidad de presentar la temperatura en modo alterno con la hora, y la otra es la opción de poder mostrar los CEROS de las decenas de hora en el display, es decir, que se encienda el cero de la izquierda de las horas entre las 0 y las 9 de la mañana. Ambas opciones serán configurables, de manera que se podrá elegir entre la presentación anterior o la nueva.

Existe una variante entre el firmware del kit de reloj FC-209 y el reloj de pared, aunque sus prestaciones son las mismas. De manera que hay dos modelos de firmware, uno para cada modelo.

·        Kit FC-209: J_RPM_v5B_EC1204B.HEX

·        Reloj de pared: J_RPM_v6B_EC1204B.HEX

Configuración del Reloj LED (v5B-v6B)
Configuración del Reloj LED (v5B-v6B)

 

También he creado dos versiones con los textos en inglés:

·        Kit FC-209:  J_RPM_v5eB_EC1204B.HEX

·        Reloj de pared: J_RPM_v6eB_EC1204B.HEX

Flow diagram (v5B-v6B)
Flow diagram (v5B-v6B)

Detalles de la presentación alterna

Cuando se active el modo de presentación alterno, la temperatura se mostrará de forma síncrona con el reloj, y lo hará cada 5 segundos. Entre el segundo 5 y el 55 de cada minuto, nunca se mostrará en el segundo ‘0’ de cada minuto, y lo hago así con el fin de mostrar siempre el cambio del minuto al paso por el segundo ‘0’ y no interrumpir la escucha de las señales horarias en caso de que estuvieran activadas. La temperatura sólo aparecerá durante un segundo de cada 5, en total 11 veces en cada minuto.

Por otra parte, como la lectura de la temperatura requiere de un tiempo y no es conveniente utilizar interrupciones cuando se está realizando la lectura, la presentación del display se detiene durante ese período de tiempo, siempre inferior a 1 segundo, pero provoca que la aparición de la temperatura en el display sea inferior a 1 segundo. Dependiendo de la velocidad del sensor de temperatura ese efecto podría pasar desapercibido, cosa que no sucede con el chip original que se incluye en el kit, ya que es demasiado lento. Me refiero al sensor de temperatura DS18B20 que se incluye en el kit de reloj.

Por ese motivo, con el fin de mejorar la visibilidad de la temperatura, la lectura sólo se realizará cada 10 segundos, de manera que entre dos presentaciones sucesivas, una de ellas siempre será instantánea y aparecerá durante 1 segundo completo. Dependiendo del segundo en el que se arranque el reloj, la lectura podría coincidir en los segundos acabados en ‘0’ o en ‘5’, ya que la primera vez que pase por alguno de ellos tendrá que leer el valor, pero al paso por el segundo ‘0’ se sincronizará y siempre leerá en los segundos acabados en ‘5’. Los segundos acabados en ‘0’ mostrarán la temperatura leída anteriormente, excepto en el segundo ‘0’ de cada minuto como ya he mencionado antes. Por otra parte, en el caso de que la temperatura sobrepase alguno de los dos umbrales de alarma, el aviso acústico se realizará sólo cuando el valor acaba de ser leído. Es decir, la alarma de temperatura sólo sonará en los segundos acabados en ‘5’

Reloj-Temperatura de abanico

Stick de 16 LEDVeremos la hora y temperatura en el kit Shake Stick Flash, de 16 LED por columna. El circuito original incluye el micro controlador AT89S52, y aunque ya viene programado con 4 imágenes diferentes, lo reprogramaremos para darle una mayor versatilidad. Este kit incluye un conector ISP (In-system programming), y esto facilita su uso como plataforma de desarrollo para realizar prácticas con este tipo de micro controladores.

Sensor: DS18B20
Sensor: DS18B20

Después de añadir al kit un sensor de temperatura (DS18B20) y un pequeño módulo de reloj en tiempo real (DS1302), sólo necesitaremos actualizar el firmware (se adjunta de forma gratuita) para ampliar las funcionalidades que ya le hicimos en la versión anterior. Este firmware permitirá la presentación de la Fecha y Hora, así como 15 imágenes diferentes (gráficos o textos). Uno de sus mensajes podrá reprogramarse a través del puerto serie, los otros 14 mensajes están almacenados en ROM, y podrán modificarse editando el archivo del firmware de forma muy simple.

Módulo RTC: DS1302
Módulo RTC: DS1302

El montaje de estos dos sensores en el kit es muy sencillo. En el siguiente esquema podemos ver las conexiones que se deben realizar. El módulo RTC (DS1302) se puede montar de forma opcional; si no se instala, el Stick mostrará solamente la temperatura cuando esté seleccionada la presentación 1ª. En caso de que se instalen ambos sensores, se alternará la presentación de la hora y temperatura.

Equema: Reloj-Temperatura
Equema: Reloj-Temperatura

IMPORTANTE: Para que aparezca la hora en el Stick, es imprescindible programar el módulo RTC, utilizando el software que se adjunta, o mediante la conexión de dicho módulo con el reloj de esfera rotante (ver la explicación en el video).

En los dos videos anteriores, podrás encontrar todos los detalles de funcionamiento y programación:

Stick LED programable #1
Stick LED programable #2

Stick.exe (v1.0.5)
Stick.exe (v1.0.5)

El nuevo firmware se puede descargar de forma gratuita desde el siguiente enlace: J_RPM_v2_STICK.HEX

Nueva versión del software de control, para programar los textos de la memoria RAM y actualizar la hora: Install_Stick_v1.05.zip

 

Firmware para el Reloj LED: EC1204B

Desarrollo de un nuevo firmware para el kit EC1204B, reloj LED con esfera rotante. Estructura interna del chip de reloj en tiempo real DS1302. Gestión de datos entre el micro-controlador y el DS1302. Direcciones y estructura de los registros del reloj y memoria RAM, envío simple o ráfaga (burst), etc. Gestión del registro para control de carga de la batería de almacenamiento (TRICKLE-CHARGE REGISTER). Modificaciones realizadas sobre el diseño original, con el fin de mejorar las prestaciones y aumentar el brillo del display. Descripción del modo de programar la hora y modificar sus ajustes con el nuevo firmware.

Este firmware se puede descargar de forma gratuita desde el siguiente enlace:
J_RPM_v1_EC1204B.HEX

Esquema del reloj: EC1204B
Esquema del reloj: EC1204B

Antes de comenzar a realizar un nuevo firmware, es importante analizar el esquema y anotar los pines de entrada/salida de todos los dispositivos que se tienen que controlar. Como en este caso, tanto el control del display de 4 dígitos como los 60 diodos led están multiplexados, es conveniente utilizar la frecuencia más alta que permita el micro-procesador. Dado que este procesador (AT89S52) podría funcionar con una frecuencia máxima de 33 MHz, podemos sustituir sin problemas su cristal de cuarzo original de 12 MHz, por otro de 22,118 MHz. Con este cambio conseguiremos un aumento de 1,8 veces en la velocidad de proceso, podremos aumentar la luminosidad del reloj y reducir su parpadeo. Es importante destacar que si cambiamos el cristal de cuarzo y utilizamos el firmware original, el reloj no funcionará.

Firmware original con el cristal de 22,118 MHz.
Firmware original con el cristal de 22,118 MHz.

El problema está en las comunicaciones entre el chip sensor de temperatura (DS18B20) y el micro-procesador. Como las comunicaciones entre ambos dispositivos se hace con un sólo hilo (1-Wire interface), sus comunicaciones son asíncronas y los tiempos deben ser muy precisos. Aunque el resto del reloj podría funcionar sin problemas, debido a que el DS1302 lleva su propio cristal de cuarzo, con el firmware original se muestra un error en el display…  y el reloj no llega a funcionar.

Las comunicaciones entre el micro-controlador y el chip de reloj DS1302 se realizan mediante 3 hilos:

  1. Reloj (SCLK)
  2. Entrada/Salida de datos (I/O)
  3. Habilitación (CE)
Comunicaciones con DS1302
Comunicaciones con DS1302

Como podemos observar en la imagen anterior, las comunicaciones entre el micro-controlador y el DS1302 pueden realizarse en modo simple (un sólo registro) o en modo burst/ráfaga (todos los registros del sector apuntado). Es importante destacar que los datos se transmiten con el flanco de subida de la señal de reloj, y se reciben con el flanco de bajada. Observar el diagrama de lectura en la imagen anterior, que entre el byte de dirección del registro (TX) y el byte de datos (RX) cambia el punto de muestreo.

Registro de carga del DS1302
Registro de carga del DS1302

El chip DS1302 incorpora un circuito para permitir la carga de su batería de almacenamiento. En caso de utilizar una pila no recargable, no se debería activar el circuito de carga. Como podemos observar en la imagen anterior, es posible conectar el circuito de carga y limitar su corriente máxima, mediante la conexión de un diodo o dos en serie y el valor de la resistencia.

Cable ISP (In-system programming)
Cable ISP (In-system programming)

Para programar el micro-controlador de este kit de reloj, podemos utilizar un interface serie (ISP: In-system programming / ICSP : In-Circuit Serial Programming) . En la imagen anterior podemos ver el conexionado que se debería utilizar entre el programador TL866A y el reloj.

Configuración del Reloj LED
Configuración del Reloj LED

En la imagen anterior se muestra la secuencia de programación del reloj  con el nuevo firmware.

Construye un Reloj LED – EC1204B

Montaje de un reloj LED con esfera rotante. Este reloj se puede comprar en kit, circuito impreso y componentes, y es muy interesante para realizar prácticas de programación con micro-controladores. Como el micro-controlador ya se compra programado, también es un kit muy interesante para principiantes en electrónica. En este video se muestra el modo de alimentar el reloj con una batería reciclada de un PC. Para cargar la batería se utiliza un módulo de carga con protección (MT4056) y un sencillo módulo DC-DC para elevar la tensión de la batería hasta los 5 voltios que necesita el reloj. Para albergar todo el conjunto, se fabrica una caja a medida.

MONTAJE - Reloj LED
MONTAJE – Reloj LED

Para obtener una tensión estabilizada de 5V a partir de una batería de 3,7V, utilizamos un pequeño circuito conversor DC-DC de alta eficiencia.

Convertidor DC-DC (5V)
Convertidor DC-DC (5V)

El  control de la PFM es similar al control de PWM, porque ambos crean un tren de impulsos rectangulares para determinar la tensión de salida del regulador. Sin embargo, en lugar de alterar el ciclo de trabajo del tren de impulsos a una frecuencia fija para establecer el voltaje de salida, el PFM altera la frecuencia del tren de impulsos con un ciclo de trabajo fijo. Durante el funcionamiento del PFM, la potencia de salida es proporcional a la frecuencia media del tren de impulsos. El convertidor sólo funciona cuando la tensión de salida cae por debajo de la tensión de salida ajustada, en base a la medida del circuito de realimentación. El controlador aumenta la frecuencia de conmutación del convertidor, hasta conseguir que el voltaje de salida alcance un valor entre la tensión de salida ajustada y entre un 0,8 a 1,5 por ciento por encima. La ventaja del control PFM es la eficiencia significativamente mejorada con cargas bajas, porque hay períodos en los que los MOSFET’s cambian lentamente o nada en absoluto, reduciendo las pérdidas de conmutación. En algunos dispositivos, cuando se omiten los impulsos, el regulador está apagado por completo, reduciendo aún más su eficiencia.

Esquema del reloj: EC1204B
Esquema del reloj: EC1204B

Como podemos apreciar en el esquema del reloj, el micro-procesador se puede programar utilizando un interface serie (ISP).

ISP (In-system programming)
ISP (In-system programming)

También podemos observar que en este módulo de reloj se incluye un sensor de temperatura, controlado por un sólo hilo (DS1820), muy interesante para realizar prácticas con micro-controladores.

Esquema interno: DS1302
Esquema interno: DS1302

El corazón de este módulo (EC1204B) es el chip DS1302, encargado de controlar la cuenta del tiempo (fecha y hora), además de almacenar los datos de sus alarmas (hora y temperaturas) dentro de su memoria RAM. Este pequeño chip (DS1302) necesita tener conectado una pequeña pila, si queremos mantener en marcha el reloj y salvar los datos de configuración cada vez que desconectamos la alimentación del módulo.

DS1302 - Transferencia de datos
DS1302 – Transferencia de datos

Aunque en el video comento que las comunicaciones entre el DS1302 y el micro-controlador se realiza con dos hilos, en realidad son necesarios 3. Además de los dos hilos I/O y SCLK, la entrada de habilitación (CE) del chip DS1302 tiene una doble función, y no puede conectarse directamente a nivel alto como en otros dispositivos. El pin CE, como podemos observar en la imagen anterior, controla el inicio y fin del paquete de datos, y es necesario su control para poder enviar cadenas de datos  con longitud variable (Burst mode).