Analizador acústico con ARDUINO

Construcción de un analizador acústico con Arduino. La información se presenta de forma gráfica, en un display LCD de 16×2 caracteres. Como ecualizador gráfico se puede utilizar el circuito integrado MSGEQ7 o el MSGEQ5, dependiendo del número de bandas de audio que queramos mostrar. Este circuito se puede montar de forma independiente, previamente programando el ATMEGA328P con la placa de desarrollo de Arduino. Una vez programado, mediante la posición de un jumper se puede configurar para que muestre 5 o 7 bandas… montando previamente el circuito integrado ecualizador correspondiente.

Utilidad de un analizador acústico

Este analizador acústico no puede competir con un equipo profesional, pero podría ser muy útil para acondicionar la acústica de un salón de actos o sala de conciertos improvisada. Comprobando la respuesta en frecuencias y volumen de escucha en diferentes puntos, se podrían corregir los defectos reorientando los altavoces/bocinas, ecualizando la respuesta de los amplificadores, etc.   Por otra parte, como este analizador de audio es de bajo costo y no requiere de conocimientos especiales para montarlo, podría ser muy instructivo realizarlo como práctica en escuelas relacionadas con la formación en las ramas de electrónica y tecnología.

Ecualizador gráfico de 5/7 bandas

Este montaje está basado en el circuito integrado MSGEQ5 / MSEGQ7,  ecualizador gráfico de audio  de 5 y 7 bandas respectivamente.  Dentro de un pequeño encapsulado DIL de 8 pines, se encuentra todo lo necesario para obtener a su salida los valores de energía a diferentes frecuencias,  a partir de la señal de audio en su entrada (descomposición espectral).

MSGEQ5 - Analizador de 5 bandas

Como se puede ver en la imagen anterior,  el MSGEQ5  analiza los valores comprendidos entre 100 y 10.000 Hz. Este rango es más que suficiente para conocer la respuesta en frecuencias de cualquier entorno. Pero si queremos analizar con más detalle los extremos de la zona audible, graves más bajos y agudos más altos, sería mejor utilizar el MSGEQ7.

MSGEQ7 - Analizador de 7 bandas

Como se puede comprobar comparando los datos entre ambos componentes,  son compatibles tanto en conexiones como características técnicas. Lo único que cambia es la gestión de los datos,  pero el protocolo es el mismo.  Con el MSGEQ5 tendremos que tomar y asignar los valores leídos de 5 en 5, y con el  MSGEQ7 lo haremos en grupos de 7 (número de bandas). Aprovechando estas características, es muy fácil construir un circuito que permita trabajar con ambos componentes.

Analizador acústico de 5/7 bandas

 

Este montaje lo puedes hacer siguiendo el esquema anterior, o utilizando la placa de desarrollo de Arduino junto con el Shield LCD, desarrollado para Arduino UNO.

Escala gráfica

La escala de las barras gráficas que muestra el display no es logarítmica, como lo harían la mayoría de los analizadores de audio. Con el fin de obtener un efecto visual más pronunciado, la gráfica que muestra el display  traduce los valores de tensión en cada banda de forma lineal.

Escalado lineal de las medidas

Si prefieres cambiar la escala, sólo tienes que modificar los valores de la tabla (resaltadas en color  amarillo), editando el código antes de programar el microprocesador ATMEGA328P con Arduino.

Firmware

El código de programación de este analizador acústico,  se puede descargar desde el siguiente enlace: Analizador acústico

D3806-Fuente de alimentación regulable (6A)

Construcción de una fuente de alimentación, con ajuste de tensión y corriente, controlada por microprocesador. Se utiliza el módulo D3806 (Bost-Buck converter DC-DC), el cuál permite regular la tensión de salida entre 0 y 38 voltios, limitar la corriente de salida entre 0 y 6 amperios… y con un rendimiento aproximado del 80%.

D3806 (DC-DC Converter)

El módulo D3806 es un conversor de tensión DC-DC, puede ser muy útil para construir una fuente de alimentación o para controlar la carga de baterías utilizando un panel solar.

Módulo D3806

Características principales

  • Visualización en display de 7 segmentos
  • Control: Tensión constante/Corriente constante
  • 3 indicadores LED (CV,CC,OUT)
  • Salida de tensión en modo automático o manual
  • Medida configurable: Voltios, Amperios, Vatios, Amperios Hora
  • Memoria para almacenar los valores actuales
  • 9 memorias para almacenar valores prefijados por el usuario

D3806 - Memorias

Información técnica

  • Tensión  de entrada: 10 V ~ 40 V
  • Corriente de entrada: 0 ~ 8A
  • Tensión de salida: 0 ~ 38 V
  • Corriente de salida: 0 ~ 6A
  • Resolución de la medida en voltios: 0,01 V
  • Resolución de la medida en amperios: 0,001 A
  • Resolución de la medida en vatios: 0,001 W
  • Resolución de la medida de energía: 0,001AH
  • Eficiencia aproximada: 80%
  • Rizado en la salida: <50 mV
  • Temperatura de trabajo:-40C ~ + 85 C
  • Frecuencia de trabajo: 150 KHz

D3806 - Esquema por bloques

 

Fuente de alimentación

Para suministrar la tensión del entrada al módulo D3806, he utilizado una fuente de alimentación conmutada de 150W (12V / 12,5A).

Fuente de alimentación

La potencia de la fuente de alimentación de entrada podría limitar las prestaciones del módulo D3806. Como es lógico, la potencia de salida de un conversor DC-DC siempre es inferior a la potencia de entrada. Si la eficiencia de este módulo es del 80%, la potencia máxima que podemos obtener a la salida del módulo D3806 será:

150 x 0,8 = 120 W

Para la base de esta fuente de alimentación se utiliza una chapa, con el fin de dar rigidez al conjunto. El resto de la caja se construye con metacrilato de color rojo semi transparente. La serigrafía del frontal se graba en el propio metacrilato con una fresadora digital (CNC).

Frontal de la fuente de alimentación

En el video siguiente, primera parte, se puede ver con más detalle la construcción de la caja y las primeras pruebas de funcionamiento del módulo D3806.

En el video siguiente, segunda parte, se realiza el montaje de todo el conjunto. También se muestran los detalles de todo el cableado y sus componentes, y se comprueba el correcto funcionamiento de esta fuente de alimentación.

En el video siguiente, tercera parte, se realiza la calibración del módulo D3806. También se hacen pruebas de funcionamiento con una carga resistiva, y se cargan 2 baterías de Ni-MH con corriente constante.